Role of information theoretic uncertainty relations in quantum theory

Petr Jizba^{1,2}

1 ITP, Freie Universität Berlin

²FNSPI, Czech Technical University in Prague

in collaboration with J.A. Dunningham \sim and J. Joo

Groningen, 8th October, 2015

Outline

- [Some history](#page-3-0)
- [Why do we need ITUR?](#page-9-0)
- [Rényi's entropy](#page-14-0)

[Introduction](#page-2-0)

[Entropy power UR](#page-21-0) [Applications in QM](#page-30-0) [Summary](#page-35-0)

[Some history](#page-3-0) [Why do we need ITUR?](#page-9-0)

$$
\begin{array}{l}\langle\Delta p_i^2\rangle_\psi\langle\Delta x_j^2\rangle_\psi\;\geq\; \delta_{ij}\frac{\hbar^2}{4}\\ \\ \mathcal{H}(\mathcal{P}^{(1)})\;+\;\mathcal{H}(\mathcal{P}^{(2)})\;\geq\;-2\log c\end{array}
$$

Quantum-mechanical URs place fundamental limits on the accuracy with which one is able to measure values of different physical quantities. This has profound implications not only on the microscopic but also on the macroscopic level of physical description.

W. Heisenberg, *Physics and Beyond, 1971*

[Introduction](#page-2-0)

[Entropy power UR](#page-21-0) [Applications in QM](#page-30-0) [Summary](#page-35-0)

[Some history](#page-3-0) [Why do we need ITUR?](#page-9-0)

Outline

1 [Introduction](#page-2-0)

• [Some history](#page-3-0)

- [Why do we need ITUR?](#page-9-0)
- [Rényi's entropy](#page-14-0)
- *2 [Entropy power UR](#page-21-0)* **• [Entropy power](#page-21-0)**
- *3 [Applications in QM](#page-30-0)*

[Some history](#page-3-0) [Why do we need ITUR?](#page-9-0)

History I

- 1927 **Heisenberg's** intuitive derivation of UR $\delta p_x \delta x \approx \hbar$
- 1927 **Kennard** considers as δ*s* as a standard deviation of *s*
- 1928 **Dirac** uses Hausdorff-Young's inequality to prove HUR. δ*x* and δ*p^x* are half-widths of wave packet and its Fourier image
- 1929/30 **Rebertson** and **Schrödinger** reinterpret HUR in terms of statistical ensemble of identically prepared experiments. Both δ*p* and δ*x* are standard deviations. Schwarz inequality in the proof.
- 1945 **Mandelstam** and **Tamm** derive time-energy UR
- 1947 **Landau** derives time-energy UR
- 1968 **Carruthers** and **Nietto** angle-angular momentum UR

[Some history](#page-3-0) [Why do we need ITUR?](#page-9-0)

History II

- 1969 **Hirschman** first Shannon's entr. based UR (weaker than VUR)
- 1971 **Synge's** three-observable UR
- 1976 **Lévy-Leblond** improves angle-angular momentum UR
- 1980 **Dodonov** derives mixed-states UR
- 80 90's Most standard HUR's are re-derived from Cramér-Rao inequality using Fisher information
- 1983/84 **Deutsch** and **Białynicky-Birula** derive Shannon-entr.-based UR
- 80 90's Kraus, Maassen, etc. derive Shannon-entropy-based UR with sharper bound than Deutsch and B-B
- 00's Uffink, Montgomery, Abe, etc. derive other non-Shannonian UR

[Some history](#page-3-0) [Why do we need ITUR?](#page-9-0)

History III

2006/7**s Ozawa's** universal error-disturbance relations

2014 **Dressel–Nori** error-disturbance inequalities

nature

2012 − 15 Violations of Heisenberg's UR measured by number of groups

I FTTFRS physics PUBLISHED ONLINE 15 JANUARY 2012 | DOI:10.1038/NPHYS2194 **Experimental demonstration of a universally** valid error-disturbance uncertainty relation

in spin measurements

Jacqueline Erhart¹, Stephan Sponar¹, Georg Sulyok¹, Gerald Badurek¹, Masanao Ozawa² and Yuji Hasegawa^{1*}

The uncertainty principle generally prohibits simultaneous measurements of certain pairs of observables and forms the basis of indeterminacy in quantum mechanics¹. Heisenberg's original formulation, illustrated by the famous y-ray microscope, sets a lower bound for the product of the measurement error and the disturbance². Later, the uncertainty relation was reformulated in terms of standard deviations³⁻⁵, where the focus was exclusively on the indeterminacy of predictions, whereas the unavoidable recoil in measuring devices has been ignored⁶. A correct formulation of the error-disturbance uncertainty relation, taking recoil into account, is essential for a deeper understanding of the uncertainty principle, as Heisenberg's original relation is valid only under specific circumstances⁷⁻¹⁰. A new error-disturbance relation, derived using the theory of general quantum measurements, has been claimed to be universally valid^{n-M}. Here, we report a neutronoptical experiment that records the error of a spin-component measurement as well as the disturbance caused on another spin-component. The results confirm that both error and disturbance obey the new relation but violate the old one in a wide range of an experimental parameter.

as $\sigma(A)^2 = (\psi|A^2|\psi) - (\psi|A|\psi)^2$. Note that a positive definite covariance term can be added to the right-hand side of equation (2), if squared, as discussed by Schrödinger⁵. For our experimental setting, this term vanishes. Robertson's relation (equation (2)) for standard deviations has been confirmed by many different experiments. In a single-slit diffraction experiment¹⁵ the uncertainty relation, as expressed in equation (2), has been confirmed. A trade-off relation appears in squeezing coherent states of radiation fields¹⁶, and many experimental demonstrations have been carried out¹⁷.

Robertson's relation (equation (2)) has a mathematical basis, but has no immediate implications for limitations on measurements. This relation is naturally understood as limitations on state preparation or limitations on prediction from the past. On the other hand, the proof of the reciprocal relation for the error $\epsilon(A)$ of an A measurement and the disturbance $\eta(B)$ on observable B caused by the measurement, in a general form of Heisenberg's error-disturbance relation

$$
c(A)\eta(B) \geq \frac{1}{2} \left[\left(\psi \left\| [A,B] \right| \psi \right) \right]
$$

is not straightforward, as Heisenberg's proof² used an unsupported

Petr Jizba [Role of information theoretic uncertainty relations in QM](#page-0-0)

 (3)

[Some history](#page-3-0) [Why do we need ITUR?](#page-9-0)

History III

2006/7**s Ozawa's** universal error-disturbance relations

2014 **Dressel–Nori** error-disturbance inequalities

2012 − 15 Violations of Heisenberg's UR measured by number of groups

PHYSICAL REVIEW A 88, 022110 (2013)

Violation of Heisenberg's error-disturbance uncertainty relation in neutron-spin measurements

Georg Sulvok,¹ Stephan Sponar,¹ Jacqueline Erhart,¹ Gerald Badurek,¹ Masanao Ozawa,² and Yuii Hasegawa¹ ¹Institute of Atomic and Subatomic Physics. Vienna University of Technology, 1020 Vienna, Austria ²Graduate School of Information Science, Nagova University, Chikusa-ku, Nagova, Japan (Received 3 June 2013; published 14 August 2013)

In its original formulation, Heisenberg's uncertainty principle dealt with the relationship between the error of a quantum measurement and the thereby induced disturbance on the measured object. Meanwhile, Heisenberg's heuristic arguments have turned out to be correct only for special cases. An alternative universally valid relation was derived by Ozawa in 2003. Here, we demonstrate that Ozawa's predictions hold for projective neutron-spin measurements. The experimental inaccessibility of error and disturbance claimed elsewhere has been overcome using a tomographic method. By a systematic variation of experimental parameters in the entire configuration space, the physical behavior of error and disturbance for projective spin-1 measurements is illustrated comprehensively. The violation of Heisenberg's original relation, as well as the validity of Ozawa's relation become manifest. In addition, our results conclude that the widespread assumption of a reciprocal relation between error and disturbance is not valid in general.

DOI: 10.1103/PhysRevA.88.022110

PACS number(s): 03.65.Ta, 03.75.Dg, 42.50.Xa, 03.67.-a

L INTRODUCTION

The uncertainty principle, proposed by Heisenberg [1] in 1927, ranks without doubt among the most famous statements

does not hold generally. Thus, his argument did not establish the universal validity of Eq. (1). In 1929, Robertson [19] extended Kennard's relation, Eq. (2) , to an arbitrary pair of observables A and B as

[Some history](#page-3-0) [Why do we need ITUR?](#page-9-0) [Rényi's entropy](#page-14-0)

History III

2006/7**s Ozawa's** universal error-disturbance relations

2014 **Dressel–Nori** error-disturbance inequalities

2012 − 15 Violations of Heisenberg's UR measured by number of groups

[Introduction](#page-2-0)

[Entropy power UR](#page-21-0) [Applications in QM](#page-30-0) [Summary](#page-35-0) *[Some history](#page-3-0) [Why do we need ITUR?](#page-9-0)*

Outline

- [Some history](#page-3-0)
- [Why do we need ITUR?](#page-9-0)
- [Rényi's entropy](#page-14-0)
- *2 [Entropy power UR](#page-21-0)* **• [Entropy power](#page-21-0)**
- *3 [Applications in QM](#page-30-0)*

[Some history](#page-3-0) [Why do we need ITUR?](#page-9-0)

Why do we need ITUR?

Q: Why do we need **i**nformation-**t**heoretic **UR** in the first place?

A: Essence of **VUR** is to put an upper bound to the degree of concentration of two (or more) probability distributions ⇔ impose a lower bound to the associated uncertainties. Usual **VUR** has many limitations[∗]:

variance as a measure of concentration is a dubious concept when PDF contains more than one peak, e.g., PDF of electron in **H atom**

I. Białynicky-Birula, 1975; D. Deutsch, 1983; H. Maasen, 1988; J. Uffink, 1990

[Some history](#page-3-0) [Why do we need ITUR?](#page-9-0)

Why do we need ITUR?

Q: Why do we need **i**nformation-**t**heoretic **UR** in the first place?

A: Essence of **VUR** is to put an upper bound to the degree of concentration of two (or more) probability distributions ⇔ impose a lower bound to the associated uncertainties. Usual **VUR** has many limitations[∗]:

variance as a measure of concentration is a dubious concept when PDF contains more than one peak, e.g., PDF of electron in **H atom**

I. Białynicky-Birula, 1975; D. Deutsch, 1983; H. Maasen, 1988; J. Uffink, 1990

[Some history](#page-3-0) [Why do we need ITUR?](#page-9-0)

Why do we need ITUR?

Q: Why do we need **i**nformation-**t**heoretic **UR** in the first place?

A: Essence of **VUR** is to put an upper bound to the degree of concentration of two (or more) probability distributions \Leftrightarrow impose a lower bound to the associated uncertainties. Usual **VUR** has many limitations[∗]:

variance as a measure of concentration is a dubious concept when PDF contains more than one peak, e.g., PDF of Schrödinger's cat st.

I. Białynicky-Birula, 1975; D. Deutsch, 1983; H. Maasen, 1988; J. Uffink, 1990

[Some history](#page-3-0) [Why do we need ITUR?](#page-9-0)

Why do we need ITUR?

variance diverges in many distributions even though such distributions are sharply peaked — heavy-tail distributions, e.g., Lévy, Cauchy, etc.

Cauchy–Lorentz PDF can be freely concentrated into an arbitrarily small region by changing its scale parameter, while its standard deviation remains very large or even **infinite**.

It is desirable to quantify the inherent quantum unpredictability also in a different way, e.g., in terms of various information measures —**entropies**

[Introduction](#page-2-0)

[Entropy power UR](#page-21-0) [Applications in QM](#page-30-0) [Summary](#page-35-0)

[Some history](#page-3-0) [Why do we need ITUR?](#page-9-0) [Rényi's entropy](#page-14-0)

Outline

- [Some history](#page-3-0)
- [Why do we need ITUR?](#page-9-0)
- [Rényi's entropy](#page-14-0)
- *2 [Entropy power UR](#page-21-0)* **• [Entropy power](#page-21-0)**
- *3 [Applications in QM](#page-30-0)*

[Some history](#page-3-0) [Why do we need ITUR?](#page-9-0) [Rényi's entropy](#page-14-0)

Rényi vs. Shannon — discrete case

Rényi entropy:

(1921-1970) (1937 - ∗)

 $\mathcal{I}_q(\mathcal{P}) \;=\; \frac{1}{1-q}\log_2\left(\sum\limits_{\smile}$ *x* $p^q(x)$ \setminus , *q* > 0

- for *q* = 1 Rényi entropy equals Shannon's entropy
-
-
-
-

[Some history](#page-3-0) [Why do we need ITUR?](#page-9-0) [Rényi's entropy](#page-14-0)

Rényi vs. Shannon — discrete case

Rényi entropy:

(1921-1970) (1937 - ∗)

 $\mathcal{I}_q(\mathcal{P}) \;=\; \frac{1}{1-q}\log_2\left(\sum\limits_{\smile}$ *x* $p^q(x)$ \setminus , *q* > 0

A. Rényi L.P. Kadanoff

\bullet for $q = 1$ Rényi entropy equals Shannon's entropy

-
- $max_{P} \mathcal{I}_q(P) \Rightarrow P = \{1/n, \ldots, 1/n\}$
-
-

[Some history](#page-3-0) [Why do we need ITUR?](#page-9-0) [Rényi's entropy](#page-14-0)

Rényi vs. Shannon — discrete case

Rényi entropy:

(1921-1970) (1937 - ∗)

 $\mathcal{I}_q(\mathcal{P}) \;=\; \frac{1}{1-q}\log_2\left(\sum\limits_{\smile}$ *x* $p^q(x)$ \setminus , *q* > 0

- \bullet for $q = 1$ Rényi entropy equals Shannon's entropy
- is additive, i.e., $\mathcal{I}_{q}(\mathcal{A}_1 \cup \mathcal{A}_2) = \mathcal{I}_{q}(\mathcal{A}_1) + \mathcal{I}_{q}(\mathcal{A}_2 | \mathcal{A}_1)$ \bullet
- $max_{P} \mathcal{I}_{q}(P) \Rightarrow P = \{1/n, \ldots, 1/n\}$
-
-

[Some history](#page-3-0) [Why do we need ITUR?](#page-9-0) [Rényi's entropy](#page-14-0)

Rényi vs. Shannon — discrete case

Rényi entropy:

(1921-1970) (1937 - ∗)

 $\mathcal{I}_q(\mathcal{P}) \;=\; \frac{1}{1-q}\log_2\left(\sum\limits_{\smile}$ *x* $p^q(x)$ \setminus , *q* > 0

- \bullet for $q = 1$ Rényi entropy equals Shannon's entropy
- **•** is additive, i.e., $\mathcal{I}_q(A_1 \cup A_2) = \mathcal{I}_q(A_1) + \mathcal{I}_q(A_2|A_1)$
- \bullet max_P $\mathcal{I}_q(\mathcal{P}) \Rightarrow \mathcal{P} = \{1/n, \ldots, 1/n\}$
-
- **•** it has operational meaning via coding theorem (Campbell, 1965)

[Some history](#page-3-0) [Why do we need ITUR?](#page-9-0) [Rényi's entropy](#page-14-0)

Rényi vs. Shannon — discrete case

Rényi entropy:

(1921-1970) (1937 - ∗)

- \bullet for $q = 1$ Rényi entropy equals Shannon's entropy
- **•** is additive, i.e., $\mathcal{I}_q(A_1 \cup A_2) = \mathcal{I}_q(A_1) + \mathcal{I}_q(A_2|A_1)$
- \bullet max_P $\mathcal{I}_q(\mathcal{P}) \Rightarrow \mathcal{P} = \{1/n, \ldots, 1/n\}$
- **•** second law of "thermodynamics": $\mathcal{I}_q(\mathcal{B}|\mathcal{A}) < \mathcal{I}_q(\mathcal{B})$
- **•** it has operational meaning via coding theorem (Campbell, 1965)

[Some history](#page-3-0) [Why do we need ITUR?](#page-9-0) [Rényi's entropy](#page-14-0)

Rényi vs. Shannon — discrete case

Rényi entropy:

(1921-1970) (1937 - ∗)

- \bullet for $q = 1$ Rényi entropy equals Shannon's entropy
- **•** is additive, i.e., $\mathcal{I}_q(A_1 \cup A_2) = \mathcal{I}_q(A_1) + \mathcal{I}_q(A_2|A_1)$
- \bullet max_P $\mathcal{I}_q(\mathcal{P}) \Rightarrow \mathcal{P} = \{1/n, \ldots, 1/n\}$
- **•** second law of "thermodynamics": $\mathcal{I}_q(\mathcal{B}|\mathcal{A}) < \mathcal{I}_q(\mathcal{B})$
- it has operational meaning via coding theorem (Campbell, 1965)

A. Rényi, 1970, 1976; L.P. Kadanoff et all, Phys. Rev. Let. **55** (1985) 2798

[Entropy power](#page-21-0)

Outline

1 [Introduction](#page-2-0)

- [Some history](#page-3-0)
- [Why do we need ITUR?](#page-9-0)
- [Rényi's entropy](#page-14-0)
- *2 [Entropy power UR](#page-21-0)* **•** [Entropy power](#page-21-0)

[Entropy power](#page-21-0)

Entropy power — Shannon's case

Let $\mathcal X$ is a random vector in $\mathbb R^D$ with PDF $\mathcal F$. The differential (or continuous) entropy $H(X)$ of X is defined as

$$
\mathcal{H}(\mathcal{X}) \ = \ -\int_{\mathbb{R}^D} \mathcal{F}(\boldsymbol{x}) \log_2 \mathcal{F}(\boldsymbol{x}) \ d\boldsymbol{x}
$$

NOTE: Discrete version is nothing but Shannon's entropy which represents an average number of binary questions needed to reveal the value of \mathcal{X} .

C.E. Shannon (1916 - 2001)

NOTE: Strictly $\mathcal{H}(\mathcal{X})$ is **not** a proper entropy but rather an **information gain**[∗].

∗ C.E. Shannon 1948, A. Rényi, 1970, 1976

[Entropy power](#page-21-0)

Entropy power — Shannon's case

Entropy power $N(\mathcal{X})$ of \mathcal{X} is a unique number such that^{*}

 $\mathcal{H}(\mathcal{X}) = \mathcal{H}(\mathcal{X}_G)$

where \mathcal{X}_G is a Gaussian random vector with zero mean and variance equal to $N(X)$ So, equivalently

$$
\mathcal{H}(\mathcal{X}) = \mathcal{H}\left(\sqrt{N(\mathcal{X})} \cdot \mathcal{Z}_G\right)
$$

with Z*^G* representing a Gaussian random vector with **zero mean** and **unit covariance matrix**. The solution is[∗] (for Shannon measured in *nats*)

$$
N(\mathcal{X}) = \frac{1}{2\pi e} \exp\left(\frac{2}{D} \mathcal{H}(\mathcal{X})\right)
$$

[∗] C. Shannon 1948, M.H.M. Costa 1985

[Entropy power](#page-21-0)

Entropy power — Rényi's case

Differential Rényi entropy $\mathcal{I}_p(\mathcal{X})$ of X has the form ($p \in \mathbb{R}$):

$$
\mathcal{I}_{p}(\mathcal{X}) = \frac{1}{(1-p)} \log_2 \left(\int_M d\boldsymbol{x} \, \mathcal{F}^p(\boldsymbol{x}) \right)
$$

NOTE: One can check that for $p \to 1$ one has $\mathcal{I}_p(\mathcal{X}) \to \mathcal{H}(\mathcal{X})$.

Definition

The *p*-th **Rényi entropy power** $N_p(\mathcal{X})$ is the solution of the equation

$$
\mathcal{I}_{p}(\mathcal{X}) = \mathcal{I}_{p}\left(\sqrt{N_{p}(\mathcal{X})} \cdot \mathcal{Z}_{G}\right)
$$

With Z*^G* being a Gaussian random vector with **zero mean** and **unit covariance matrix**.

[Entropy power](#page-21-0)

Entropy power — Rényi's case

Theorem

Let $\mathcal X$ be a random vector in $\mathbb R^D$ with PDF $\mathcal F\in \ell^{\rho}(\mathbb R^D),$ where $p>1.$ The p -th **Rényi entropy power** *of* X *of the form*

$$
N_p(\mathcal{X}) = \frac{1}{2\pi} p^{-p'/p} \exp\left(\frac{2}{D} \mathcal{I}_p(\mathcal{F})\right)
$$

(with p' and p *being Hölder conjugates) is the only admissible class of solutions in the former equation.*

(Proof is based on the scaling property $\mathcal{I}_p(a\mathcal{X}) = \mathcal{I}_p(\mathcal{X}) + D \log |a|$ **)**

NOTE: In the limit $p \to 1_+$ one has $N_p(\mathcal{X}) \to N(\mathcal{X})$.

NOTE: There are two immediate important observations:

$$
N_p(\sigma X_G^1) = \sigma^2
$$
 and $N_p(X_G^{\mathbb{K}}) = |\mathbb{K}|^{1/D} (\mathcal{X}_G^{\mathbb{K}} \sim \mathcal{N}(\mathbf{0}, \mathbb{K}))$

[Entropy power](#page-21-0)

Entropy power uncertainty relations — B-B theorem

Theorem (Beckner–Babenko theorem)

Let
$$
f^{(2)}(\mathbf{x}) \equiv \hat{f}^{(1)}(\mathbf{x}) = \int_{\mathbb{R}^D} e^{2\pi i \mathbf{x} \cdot \mathbf{y}} f^{(1)}(\mathbf{y}) d\mathbf{y}
$$

then for $p \in [1, 2]$ *one has*

$$
\|\hat{f}\|_{p'} \ \leq \ \frac{|p^{D/2}|^{1/p}}{|(p')^{D/2}|^{1/p'}} \, \|f\|_p \quad \text{with} \quad 1/p+1/p'=1
$$

NOTE: Inequality is saturated only for **Gaussian** PDF's.[∗]

Define the square-root density likelihood: $|f(\mathbf{y})| = \sqrt{\mathcal{F}(\mathbf{y})}$ then BBI implies

$$
\left(\int_{\mathbb{R}^D} [\mathcal{F}^{(2)}(\bm{y})]^{(1+t)} d\bm{y}\right)^{1/t} \left(\int_{\mathbb{R}^D} [\mathcal{F}^{(1)}(\bm{y})]^{(1+r)} d\bm{y}\right)^{1/r} \leq [2(1+t)]^D |t/r|^{D/2r}
$$

 $(r = p/2 - 1$ and $t = p'/2 - 1 \Rightarrow t = -r/(2r + 1)$

[∗] E.H. Lieb, 1990

[Entropy power](#page-21-0)

Entropy power uncertainty relations

When the negative logarithm is applied on both sides then

$$
\mathcal{I}_{1+t}(\mathcal{F}^{(2)})+\mathcal{I}_{1+t}(\mathcal{F}^{(1)}) \ \geq \ \frac{1}{r} \log[2(1+r)]+\frac{1}{t} \log[2(1+t)]
$$

This is equivalent to

$$
N_{1+t}(\mathcal{F}^{(2)})N_{1+r}(\mathcal{F}^{(1)}) = N_{p/2}(\mathcal{X})N_{q/2}(\mathcal{Y}) \geq \frac{1}{16\pi^2}
$$

NOTE 1: When both X and Y represent random **Gaussian** vectors then

$$
|\mathbb{K}_{\mathcal{X}}|^{1/D}|\mathbb{K}_{\mathcal{Y}}|^{1/D} = \frac{1}{16\pi^2}
$$

NOTE 2: When X ia random vector with the covariant matrix $(\mathbb{K}_{\mathcal{X}})_{ij}$ then

$$
N_{p/2}(\mathcal{X}) \leq |\mathbb{K}_{\mathcal{X}}|^{1/D} \leq \sigma_{\mathcal{X}}^2
$$

[Entropy power](#page-21-0)

Enters QM

Consider state vectors that are Fourier transform duals, i.e.

$$
\psi(\mathbf{x}) = \int_{\mathbb{R}^D} e^{i \mathbf{p} \cdot \mathbf{x}/\hbar} \hat{\psi}(\mathbf{p}) \frac{d \mathbf{p}}{(2\pi \hbar)^{D/2}},
$$

$$
\hat{\psi}(\mathbf{p}) = \int_{\mathbb{R}^D} e^{-i \mathbf{p} \cdot \mathbf{x}/\hbar} \psi(\mathbf{x}) \frac{d \mathbf{x}}{(2\pi \hbar)^{D/2}}
$$

Comparing with entropy power UR's we have

$$
f^{(2)}(\mathbf{x}) = (2\pi\hbar)^{D/4}\psi(\sqrt{2\pi\hbar}\mathbf{x}),
$$

$$
f^{(1)}(\mathbf{p}) = (2\pi\hbar)^{D/4}\hat{\psi}(\sqrt{2\pi\hbar}\mathbf{p})
$$

Consequently we can write the associated RE-based UR's as

$$
N_{1+t}(|\psi|^2)N_{1+r}(|\hat{\psi}|^2) \ \geq \ \frac{\hbar^2}{4}
$$

[Entropy power](#page-21-0)

Reconstruction theorem

NOTE: In the case that the PDFs are Gaussian, the whole family of **REPURs** reduces to the single familiar **VUR**

$$
\sigma_x^2 \sigma_\rho^2 \, \geq \, \frac{\hbar^2}{4}
$$

Q: In what sense is the entire **tower** of REPURs more general than a single Robertson–Schrödinger **VUR**?

A: \searrow \searrow

Theorem

In order to uniquely reconstruct the underlying PDF for observed QM system one needs to know **all** *associated entropy powers* [∗] *.*

NOTE: In cases when the underlying distribution has **all cumulants** finite ⇔ Hamburger–Stiltjes moment problem

[∗] PJ., J. Dunningham and J. Joo, AOP 2014

Simple examples I — heavy tailed distributions

Consider the wave function

$$
\psi(x) = \sqrt{\frac{c}{\pi}} \sqrt{\frac{1}{c^2 + (x - m)^2}} \Rightarrow \hat{\psi}(p) = e^{-imp/\hbar} \sqrt{\frac{2c}{\pi^2 \hbar}} K_0(c|p|/\hbar) \text{ (both } \in \ell^2(\mathbb{R}))
$$

The corresponding PDFs read

$$
\mathcal{F}^{(2)}(x) = \frac{c}{\pi} \frac{1}{c^2 + (x - m)^2}, \quad \mathcal{F}^{(1)}(\rho) = \frac{2c}{\pi^2 \hbar} K_0^2(c|\rho|/\hbar)
$$

 \bullet Particularly interesting REPURs are

$$
N_1(\mathcal{F}^{(1)})N_1(\mathcal{F}^{(2)})\;=\; 0.0052\,\hbar^2\pi^4\;>\;\frac{\hbar^2}{4},\quad \ N_{1/2}(\mathcal{F}^{(1)})N_\infty(\mathcal{F}^{(2)})\;\stackrel{!}{=}\;\frac{\hbar^2}{4}
$$

cf. with $\langle (\varDelta x)^2 \rangle_{\psi} = \infty$ and $\langle (\varDelta p)^2 \rangle_{\psi} = \hbar^2 \pi/16c^2$

⇒ Schrödinger–Robertson's VUR is completely uninformative

Simple examples II — cat states

Consider a superposition of a vacuum $|0\rangle$ and a squeezed vacuum $|z\rangle$ – **cat state**

Simple examples II — cat states

Consider a superposition of a vacuum $|0\rangle$ and a squeezed vacuum $|z\rangle$, i.e.

$$
|\psi\rangle\ =\ \mathcal{N}\left(|0\rangle+|z\rangle\right)
$$

where

$$
|z\rangle = \sum_{m=0}^{\infty} (-1)^m \frac{\sqrt{(2m)!}}{2^m m!} \left[\frac{(\tanh \zeta)^m}{\sqrt{\cosh \zeta}} \right] |2m\rangle
$$

is a superposition of even number states $|2m\rangle$ with the **squeezing** parameter $\zeta \Rightarrow$

$$
\mathcal{F}^{(2)}(x) = \mathcal{N}^2 \sqrt{\frac{\omega}{\pi \hbar}} \left| \exp\left(-\frac{\omega x^2}{2\hbar}\right) + e^{\zeta/2} \exp\left(-\frac{\omega e^{2\zeta} x^2}{2\hbar}\right) \right|^2
$$

$$
\mathcal{F}^{(1)}(\rho) = \mathcal{N}^2 \frac{1}{\sqrt{\pi \hbar \omega}} \left| \exp\left(-\frac{\rho^2}{2\hbar \omega}\right) + e^{-\zeta/2} \exp\left(-\frac{e^{-2\zeta} \rho^2}{2\hbar \omega}\right) \right|^2
$$

$$
\Rightarrow \quad \mathcal{I}_{1/2}(\mathcal{F}^{(2)})\mathcal{I}_{\infty}(\mathcal{F}^{(1)}) \; = \; \mathcal{I}_{\infty}(\mathcal{F}^{(2)})\mathcal{I}_{1/2}(\mathcal{F}^{(1)}) \; = \; \frac{\hbar^2}{4}
$$

Simple examples II — cat states

Q: What is so special about the extremal values $\mathcal{I}_{1/2}$ and \mathcal{I}_{∞}

A: \searrow \searrow

Theorem

Non-linear *nature of RE emphasizes the* **more probable** *parts of the PDF (typically the* **middle parts***) for p* > 1 *while for p* < 1 *the* **less probable** *parts of the PDF (typically the tails) are accentuated. In other words,* $\mathcal{I}_{1/2}$ *mainly carries information on the rare events while* I_∞ *on the common events.*

REPUR is saturated at extremal *p*'s because PDFs are **Gaussian** both at wings and at peaks $p = x = 0$. **REPURs** with different indices do not saturate bound.

Little speculation at the end ...

NOTE: There are **information-theoretic** derivations of **black-hole** evap. formula [∗]. The idea is to combine Landauer principle $+$ Heisenberg's UR

Q: What happens with the BH evaporation formula when Heisenberg's **UR** is augmented with other (higher order) **REPURs**?

A: Either IT derivations are **hoax**, or the BH radiation spectrum gets more texture than the simple Planck's BB formula suggests.

[∗]L. Susskind, JHEP 2005; R.J. Adler, GRG 2001; PJ., H. Kleinert and F. Scardigli, PRD 2008 · · ·

Summary

- We have generalized Shannon's ITUR to account for generalized information measures of Rényi. We have seen that in certain QM systems our ITUR's provide more stringent bound on concentrations of involved probability distributions than conventional VUR's.
- Our method holds future promise precisely because a large part of the structure of QM has always concerned with information.

Summary

- We have generalized Shannon's ITUR to account for generalized information measures of Rényi. We have seen that in certain QM systems our ITUR's provide more stringent bound on concentrations of involved probability distributions than conventional VUR's.
- Our method holds future promise precisely because a large part of the structure of QM has always concerned with information.
- Entropy-power inequality is instrumental in treatments of QM systems with heavy tailed or multi-peak distributions (Bright–Wigner systems, Schrödinger cat states, etc.)[∗]

[∗]PJ, J.Dunningham and J.Joo, AOP 2015

"Its all quite elementary, my dear Watson"

- Holmes, *A Study in Scarlet* Arthur C. Doyle

Existent ITUR's and QM

Landau–Pollack ineq. ⇒ Shannon's ITUR for discrete PDF's

 $\mathcal{S}(\mathcal{P}^{(2)})+\mathcal{S}(\mathcal{P}^{(1)}) \ \geq \ -2\log_2c$

• Riesz–Thorin ineq. \Rightarrow Rényi's ITUR for discrete PDF's

 \bullet Beckner–Babenko ineq. \Rightarrow Rényi's ITUR for continuous PDF's

$$
\mathcal{N}_{p/2}(\mathcal{X})\mathcal{N}_{q/2}(\mathcal{Y})\;\geq\;\frac{1}{16\pi^2}\;{\color{blue}\raisebox{0.35ex}{\scriptsize{*}}}\;\;\llbracket\smile\rrbracket
$$

-
-

Existent ITUR's and QM

Landau–Pollack ineq. ⇒ Shannon's ITUR for discrete PDF's

 $\mathcal{S}(\mathcal{P}^{(2)})+\mathcal{S}(\mathcal{P}^{(1)}) \ \geq \ -2\log_2c$

Riesz–Thorin ineq. ⇒ Rényi's ITUR for discrete PDF's

 $\mathcal{I}_{1+t}(\mathcal{P}^{(2)}) + \mathcal{I}_{1+r}(\mathcal{P}^{(1)}) \ \geq \ -2\log_2 c^{\;*}\ \ \llbracket \smallsmile \rrbracket$

 \bullet Beckner–Babenko ineq. \Rightarrow Rényi's ITUR for continuous PDF's

$$
\mathcal{N}_{p/2}(\mathcal{X})\mathcal{N}_{q/2}(\mathcal{Y})\;\geq\;\frac{1}{16\pi^2} \;{\color{blue}\raisebox{0.35ex}{\scriptsize$*\;}}\; \llbracket \smile \rrbracket
$$

-
-

Existent ITUR's and QM

Landau–Pollack ineq. ⇒ Shannon's ITUR for discrete PDF's

 $\mathcal{S}(\mathcal{P}^{(2)})+\mathcal{S}(\mathcal{P}^{(1)}) \ \geq \ -2\log_2c$

Riesz–Thorin ineq. ⇒ Rényi's ITUR for discrete PDF's

 $\mathcal{I}_{1+t}(\mathcal{P}^{(2)}) + \mathcal{I}_{1+r}(\mathcal{P}^{(1)}) \ \geq \ -2\log_2 c^{\;*}\ \ \llbracket \smallsmile \rrbracket$

Beckner–Babenko ineq. ⇒ Rényi's ITUR for continuous PDF's

$$
\mathcal{N}_{p/2}(\mathcal{X})\mathcal{N}_{q/2}(\mathcal{Y})\ \ge\ \frac{1}{16\pi^2}\ ^{*}\ \ \left[\smile\right]
$$

-
-

Existent ITUR's and QM

Landau–Pollack ineq. ⇒ Shannon's ITUR for discrete PDF's

 $\mathcal{S}(\mathcal{P}^{(2)})+\mathcal{S}(\mathcal{P}^{(1)}) \ \geq \ -2\log_2c$

Riesz–Thorin ineq. ⇒ Rényi's ITUR for discrete PDF's

 $\mathcal{I}_{1+t}(\mathcal{P}^{(2)}) + \mathcal{I}_{1+r}(\mathcal{P}^{(1)}) \ \geq \ -2\log_2 c^{\;*}\ \ \llbracket \smallsmile \rrbracket$

 \bullet Beckner–Babenko ineq. \Rightarrow Rényi's ITUR for continuous PDF's

$$
\mathcal{N}_{p/2}(\mathcal{X})\mathcal{N}_{q/2}(\mathcal{Y})\ \ge\ \frac{1}{16\pi^2}\ ^{\ast}\ \left[\smile\right]
$$

Moral

- right-hand sides are independent of the sate $|\psi\rangle$
- o often more stringent bound on concentrations of PDF's than VUR's

